3, No. 6 Mat. Res. Bull. Vol. 6, pp. 433-440, 1971. Pergamon Press, Inc. Printed in the United States.

Sci.,

HIGH PRESSURE SYNTHESIS AND CRYSTAL DATA

 OF THE RARE EARTH ORTHOALUMINATES1933).
P. D. Dernier and R. G. Maines

Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey 07974
(960).
(Received March 25, 1971; Refereed)
ision
ABSTRACT
Single crystals of the rare earth orthoaluminates, REAlO_{3}, with $\mathrm{RE}=\mathrm{Dy}-\mathrm{Lu}$, have been synthesized at high pressure in the presence of a flux. Lattice parameters for the orthorhombic members of the series, Sm-Lu, are reported. The a and c lattice parameters decrease smoothly in the direction Sm to Lu but the b parameter increases asymptotically to a maximum value at Lu. The anomalous behavior of the b parameter is similar to the variation of this parameter in the isostructural REFeO_{3} series between La and Gd . For these latter compounds ${ }^{3}$ the variation has been explained in terms of a gradual change in the coordination number of the rare earth cation. A similar mechanism appears to be the cause in the case of the rare earth orthoaluminates.

Introduction

Unlike the ABO_{3} perovskite-like compounds where $A=$ rare earth and $B=F e, G a, V, C r, R h, S c$ and $I n$, the rare earth orthoaluminates are not isostructural across the entire series. From La through Nd the orthoaluminates have a trigonal distortion of the ideal perovskite structure whereas from Sm through Lu they have the orthorhombic distortion found in the rare earth orthoferrites. The series is also unusual in that the synthesis of the members $D y-\mathrm{TmAlO}_{3}$ at atmospheric pressure generally yields a mixture of phases, namely the rare earth orthoaluminate plus the rare earth aluminum garnet(1). More
gallium garnets and $\mathrm{Ga}_{2} \mathrm{O}_{3}(7)$, and for this reason was chosen as a flux for the orthoaluminates. Sample volumes of approximately 0.054 cc . each were packed into separate platinum containers. During all runs, two materials were pressed simultaneously at 32.5 kilobars and $1200^{\circ} \pm 10^{\circ} \mathrm{C}$, for a period of four hours. After quenching, the apparatus was allowed to cool over night, the pressure released, and the subsequent recovery of the sample containers effected. Each platinum cell was then broken open and immersed in distilled water. The NaOH rapidly dissolved leaving small, rectangular parallelpiped-shaped, transparent crystals. The crystals of the Ho, Er, and Tm compounds were colored pale yellow, pale pink, and pale green respectively, while those of Dy, Yb and Lu aluminate were colorless. All the crystals were strongly birefringent.

X-ray powder films were taken of $E u-\mathrm{LuAlO}_{3}$ crushed crystals with a Guinier camera using KCl as internal standard and CuKa radiation $\left(K_{\alpha_{1}}=1.5405 \AA\right.$ and $\left.K \alpha_{2}=1.5443 \AA\right)$. None of the powder films showed any trace of garnet lines after 24 hrs . exposure. They were all indexed on the basis of the orthorhombic cell, space group Pbnm, with lattice constants given in Table 1.

TABLE 1

Orthorhombic Cell Data for the Series $\mathrm{SmAlO}_{3}-\mathrm{LuAlO}_{3}$. The standard deviations are less than 10^{-4}, except for those of EuAlO_{3} and GdAlO_{3} which are twice as large.

	a, (A)	b, (A)	c, $\left(\begin{array}{l}\text { A }\end{array}\right.$	Vol. ${ }^{\circ}$
SmAlO_{3}	5.2912	5.2904	7.4740	209.22
EuAlO3	5.267	5.294	7.459	208.0
GdAlO3	5.250	5.302	7.447	207.3
TbAlO_{3}	5.2317	5.3097	7.4196	206.11
DyAl0 3	5.2053	5.3172	7.3950	204.68
HoAlO_{3}	5.1811	5.3229	7.3741	203.37
ErAlO3	5.1595	5.3271	7.3539	202.12
TmAlO3	5.1435	5.3277	7.3335	200.96
YbAlO 3	5.1251	5.3310	7.3146	199.85
LuAlO_{3}	5.1012	5.3317	7.3000	198.55

The lattice parameters were refined from values of 2θ which were $\leq 2 \theta(224)$, excluding overlapped lines. The lattice parameters for SmAlO_{3} were determined by a simplified version
of Bond's method $(8,9)$. The powder patterns for $\mathrm{Eu}-\mathrm{LuAlO}_{3}$ are listed in Table 2.

Discussion

The lattice parameters of $\mathrm{SmAlO}_{3}-\mathrm{LuAlO}_{3}$ are plotted against atomic number in Fig. l. Atomic numbers rather than ionic radii were chosen as abscissae since the variation in coordination number across the series is not known. One can see that while the \underline{a} and \underline{c} parameters decrease in a nearly linear fashion from $S m-L u$, \underline{b} increases asymptotically to the Lu value. The behavior of the \underline{b} parameter resembles that of $\mathrm{REGaO}_{3}(10)$ compounds between Ce and Gd and the \underline{b} parameter of the REFeO_{3} series between La and $G d(11)$. However, in the case of the two latter series, the \underline{b} values eventually decrease for smaller rare earth ions, but no decrease occurs for the REAlO 3 compounds.

The entire series of REFeO_{3} structures have been refined from single crystal data in order to fully understand the mechanism underlying this anomalous behavior(4). It is now clear that the oxygen polyhedron around the rare earth ion is distorted and this distortion varies drastically across the series. The rare earth ion has approximately an eight fold

Lattice parameters $\underline{a}, \underline{b}$, and \underline{c} versus atomic number for the rare eārth or̄̈hoaluminates.

TABLE 2
Guinier Diffraction Data for Some Rare Earth Orthoaluminates．

Eu		ca		Tb		Dy		Ho		Er		Tm		Yb		L1	
${ }^{1}$	${ }^{d}$	d。	d_{c}	${ }^{\text {d }}$ 。	${ }^{\text {d }}$ c	do	${ }^{\text {d }}$ c	d。	d_{c}	${ }^{\text {d }}$ 。	${ }^{\text {d }}$ e	${ }^{\text {d }}$ 。	d_{c}	${ }^{\text {d }}$ 。	${ }^{\text {d }}$ c	${ }^{\text {d }}$ 。	${ }^{d}=$
												4.215 vw	4.211	4.203 vw	4.197	4.180 vw	4.121
3.735 m	3.734	3.731 m	3.731	3.729 m	3.727	3.722 m	3.720	3.714 s	3.713	3.709 m	3.706	3.700 ms	3.700	3.696 s	3.695	3.685 ms	3.636
		3.726 w	3.723	3.711 mm	3.710	3.699 m	3.698	3.688 ms	3.687	3.679 m	3.677	3.667 m	3.667	3.655 ms	3.657	3.651 wn	3.650
		3.337 w	3.335	3.330 w	3.330	3.325 mm	3.323	3.316 m	3.316	3.310 m	3.310	3.303 m	3.304	3.298 m	3.298	3.291 m	3.290
2.647 w	2.647	2.651 w	2.651	2.653 w	2.655	2.659 mm	2.659	2.662 mm	2.661	2.663 mm	2.664	2.663 m	2.664	2.665 m	2.666	2.665 wm	C． 666
2.639 s	2.639	2.635 s	2.635	2.628 s	2.629	2.622 vs	2.622	2.617 vs	2.616	2.611 s	2.610	2.603 s	2.605	2.598 vs	2.599	2.593 vs	c． 594
	2.634	2.626 v	2.625	2.616 w	2.616	2.603 km	2.603	2.591 m	2.591	2.579 wm	2.580	2.572 m	2.572	2.562 m	2.563	2.550 mm	2.551
		2.499 vvw	2.497	2.500 vv	2.500	2.502 wm	2.502	2.503 mm	2.503	2.505 m	2.504	2.503 m	2.504	2.503 m	2.504	2.503 m	2.504
										2.214 w	2.214	2.208 w	2.209	2.202 u	2.202	2.194 w	2.194
2.158 vm	2.159	2.159 u	2.159	2.159 v	2.159	2.158 m	2.159	2.159 m	2.158	2.158 wm	2.214 2.157	2.154 m	2.155	2.154 m	2.154	2． 153 m	2.153
2.151 wm	2.151	2.145 w	2.145	2.138 w	2.138	2.128 m	2.128	2.120 m	2.120	2.113 wm	2.112	2.104 m	2.105.	2.098 ms	2.099	2.091 m	2.091
				2.060 vw	2.061	2.055 vw	2.055	2.050 w	2.050	2.044 v	2.045	2.039 wm	2.040	2.035 m	2.035	2.030 m	2.031
								1.992 vw	1.992					1.986 vw	1.986	．	
1.865 wa	1.867	1.865 wm	1.865	1.864 km	1.863	1.860 m	1.860	1.856 m	1.856	1.854 mm	1.853	1.850 m	1.850	1.848 m	1.847	1.843 m	1.843
1.065 wm	1.865			1.855 w	1.855	1.849 m	1.849	1.843 m	1.844	1.839 mm	1.838	1.833 km	1.833	1.828 m	1．829	1.824 vm	1.825
1.815 v	1.812			1.808 ＊	1.810	1.805 wm	1.807	1.805 w	1.806	1.803 vw	1.804	1.802 wm	1.801	1.799 mm	1.799	1.797 km	1.797
1.815	1.811			1.800 \％	1.807	1.805 wm	1.804	1.800 wm	1.800	1.797 m	1.797	1.795 vm	1.794	1.791 m	1.791	1.787 m	1.787
1.668 w	1.669	1.665 mm	1.668	1.665 vw	1.665	1.661 vu	1.661	1.658 w	1.658	1.654 mm	1.655	1.652 w	1.652	1.649 w	1.649	1.645 mm	1.645
	1.668	1.665 wm	1.666	1.661 vw	1.661	1.655 w	1.656	1.652 wm	1.651	1.647 mm	1.647	1.643 mm	1.643	1.639 mm	1.639	1.635 m	1.636
				1.657 vw	1.657	1.649 vw	1.649	1.643 vw	1.643	1.637 m			1.636	1.628 u	1.627	1.620 w	1.620
		1.634 w	1.634	1.635 vs	1.635	1.636 wm	1.636	1.636 wm	1.637	1.637 m	1.637	1.636 m	1.632	1.636 m	1.636	1.635 m	1.636
		1.527 u	1.527	1.528 v	1.528	1.528 wm	1.528	1.527 mm		1.527 km	1.527	1.593 w 1.527 mm	1.593 1.526	1.589 vw 1.526 vm	1.588		
				1.520 w	1.521	1.518 mm	1.518	1.515 wm	1.515	1.527 wm	1.527	1.527 km	1.526 1.510	1.5208 mm	1.526 1.508	1.526 u 1.506 mm	1.525 1.506
1.522 w	1.522		1.519		1.513		1.507	1.502 w	1.502	1.497 wal	1.497	1.493 w	1.493	1.489 w	1.489	1.485 vm	1.484
	1.521	1.518 wm	1.518	1.512 m	1.513	1.507 m	1.506	1.500 m	1.501	1.495 mm	1.495	1.491 m	1.491	1.487 m	1.486	1.482 mm	1.481
										1.478 W	1.478	1.476 km	1.475	1.473 mm	1.472	$1.470 \times$	1.469
						1.387 w	1.387	1.386 wm	1.386	1.384 m	1.385	1.384 m	1.384	$\begin{aligned} & 1.383 \mathrm{~km} \\ & 1.360 \mathrm{vu} \end{aligned}$	$\begin{aligned} & 1.383 \\ & 1.360 \end{aligned}$	1.382 vm	1.382
										1.310 w	1.310	1.310 vw	1.310	1.312 w	1.311		
1.320 w	1.319			1.315 w	1.315	1.311 m	1.311	1.308 m	1.308	1.305 m	1.305	1.302 km	1.302	1.300 mm	1.300	1.297 m	1.297
			－					1.220						1.215 wm	1.215		
						1.178 m	1.176						1.170	1.168 mm	1.167		
												1.169 mm	1.169				
												1.167 w	1.167				
1.179 w	$\begin{aligned} & 1.180 \\ & 1.179 \end{aligned}$											1.160 wm	1.161	1.158 w	1.158		
												1.149 w	1.149	1.148 w	1.147		
													1.104				
												1.105 vm	$\begin{aligned} & 1.104 \\ & 1.104 \end{aligned}$				

coordination between TbFeO_{3} and NaFeO_{3}. At the extremities of the series this approximation breaks down. For LuFeO_{3} the seventh and eighth nearest oxygen atoms are becoming second nearest neighbors, while for LaFeO_{3} the ninth nearest oxygen is too close to be considered a next nearest-neighbor. This change in coordination number governs the behavior of the \underline{b} parameter.

It seems likely that a similar mechanism applies in the case of the REAlO_{3} series. However, it is important to note that the orthorhombic series begins with SmAlO_{3} where the coordination number of Sm^{3+} is very nearly twelve, compared to eight for its iron counterpart. Also, the nonlinear variation of the \subseteq parameter and the significant change in slope of the b parameter between Sm and Tb in Fig. l suggest a rapid decrease in the coordination numbers of the rare earth ions. Between DyAlO_{3} and LuAlO_{3} the coordination number does not appear to decrease as drastically. However, without a detailed knowledge of the structure of at least several more REAlO_{3} members, it is difficult to ascertain how the rare earth polyhedron varies across the series.

Another interesting point is that starting with Ho one needs high pressures to synthesize single phase rare earth orthoaluminates. LuAlO_{3} was easily formed at 32 kbar but no attempt was made to find the minimum pressure necessary for this synthesis. We suspect that 32 kbar exceeds the minimum considerably. It is a logical step to attempt to synthesize under pressure MAlO_{3}, where M is of smaller ionic radius than Lu^{3+}. We believe In^{3+} and possibly Sc^{3+} are likely M-cations and expect to proceed with these experiments in the near future. Acknowledgements
The authors wish to thank J. P. Remeika for the $\mathrm{Sm}-\mathrm{TbAlO}_{3}$ crystals used in the lattice parameter determinations and M. Marezio for helpful discussions and continued interest in this work.

References

1. S. J. Schneider, R. S. Roth and J. L. Waring, J. Res. Natl. Bur. Std. A65, 345 (1961).
2. G. Garton and B. M. Wanklyn, J. Cryst. Growth 1, 164 (1967).
3. M. Marezio, P. D. Dernier and J. P. Remeika, to be published.
4. M. Marezio, J. P. Remeika and P. D. Dernier, Acta Cryst. B26, 2008 (1970).
5. M. Marezio and P. D. Dernier, Mat. Res. Bull. 6, 23 (1971).
6. G. C. Kennedy and R. Newton, Solids Under Pressure. McGraw-Hill, New York (1962).
7. M. Marezio, J. P. Remeika and P. D. Dernier, Mat. Res. Bull. 1, 247 (1966).
8. W. L. Bond, Acta Cryst. 13, 814 (1960).
9. R. L. Barnes, Mat. Res. Bull. 2, 273 (1967).
10. M. Marezio, J. P. Remeika and P. D. Dernier, Inorg. Chem. 7, 1337 (1968).
11. M. Eibschütz, Acta Cryst. 19, 337 (1965).
